MusePose/test_stage_1.py
2024-05-28 13:32:28 +08:00

192 lines
6.5 KiB
Python

import os,sys
import argparse
import os
import sys
from datetime import datetime
from pathlib import Path
from typing import List
import glob
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from musepose.models.pose_guider import PoseGuider
from musepose.models.unet_2d_condition import UNet2DConditionModel
from musepose.models.unet_3d import UNet3DConditionModel
from musepose.pipelines.pipeline_pose2img import Pose2ImagePipeline
from musepose.utils.util import get_fps, read_frames, save_videos_grid
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config",default="./configs/test_stage_1.yaml")
parser.add_argument("-W", type=int, default=768)
parser.add_argument("-H", type=int, default=768)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cnt", type=int, default=1)
parser.add_argument("--cfg", type=float, default=7)
parser.add_argument("--steps", type=int, default=20)
parser.add_argument("--fps", type=int)
args = parser.parse_args()
return args
def main():
args = parse_args()
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device="cuda")
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
# config.motion_module_path,
"",
subfolder="unet",
unet_additional_kwargs={
"use_motion_module": False,
"unet_use_temporal_attention": False,
},
).to(dtype=weight_dtype, device="cuda")
pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device="cuda"
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device="cuda")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
width, height = args.W, args.H
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2ImagePipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
m1 = config.pose_guider_path.split('.')[0].split('/')[-1]
save_dir_name = f"{time_str}-{m1}"
save_dir = Path(f"./output/image-{date_str}/{save_dir_name}")
save_dir.mkdir(exist_ok=True, parents=True)
def handle_single(ref_image_path, pose_path,seed):
generator = torch.manual_seed(seed)
ref_name = Path(ref_image_path).stem
# pose_name = Path(pose_image_path).stem.replace("_kps", "")
pose_name = Path(pose_path).stem
ref_image_pil = Image.open(ref_image_path).convert("RGB")
pose_image = Image.open(pose_path).convert("RGB")
original_width, original_height = pose_image.size
pose_transform = transforms.Compose(
[transforms.Resize((height, width)), transforms.ToTensor()]
)
pose_image_tensor = pose_transform(pose_image)
pose_image_tensor = pose_image_tensor.unsqueeze(0) # (1, c, h, w)
ref_image_tensor = pose_transform(ref_image_pil) # (c, h, w)
ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
image = pipe(
ref_image_pil,
pose_image,
width,
height,
args.steps,
args.cfg,
generator=generator,
).images
image = image.squeeze(2).squeeze(0) # (c, h, w)
image = image.transpose(0, 1).transpose(1, 2) # (h w c)
#image = (image + 1.0) / 2.0 # -1,1 -> 0,1
image = (image * 255).numpy().astype(np.uint8)
image = Image.fromarray(image, 'RGB')
# image.save(os.path.join(save_dir, f"{ref_name}_{pose_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.png"))
image_grid = Image.new('RGB',(original_width*3,original_height))
imgs = [ref_image_pil,pose_image,image]
x_offset = 0
for img in imgs:
img = img.resize((original_width*2, original_height*2))
img.save(os.path.join(save_dir, f"res_{ref_name}_{pose_name}_{args.cfg}_{seed}.jpg"))
img = img.resize((original_width,original_height))
image_grid.paste(img, (x_offset,0))
x_offset += img.size[0]
image_grid.save(os.path.join(save_dir, f"grid_{ref_name}_{pose_name}_{args.cfg}_{seed}.jpg"))
for ref_image_path_dir in config["test_cases"].keys():
if os.path.isdir(ref_image_path_dir):
ref_image_paths = glob.glob(os.path.join(ref_image_path_dir, '*.jpg'))
else:
ref_image_paths = [ref_image_path_dir]
for ref_image_path in ref_image_paths:
for pose_image_path_dir in config["test_cases"][ref_image_path_dir]:
if os.path.isdir(pose_image_path_dir):
pose_image_paths = glob.glob(os.path.join(pose_image_path_dir, '*.jpg'))
else:
pose_image_paths = [pose_image_path_dir]
for pose_image_path in pose_image_paths:
for i in range(args.cnt):
handle_single(ref_image_path, pose_image_path, args.seed + i)
if __name__ == "__main__":
main()