Some checks failed
Close inactive issues / close-issues (push) Has been cancelled
130 lines
3.9 KiB
Python
130 lines
3.9 KiB
Python
import io
|
|
import re
|
|
|
|
import librosa
|
|
import torch
|
|
import torchaudio
|
|
from cachetools import LRUCache, cached
|
|
|
|
CACHE_MAXSIZE = 10000
|
|
MICRO_BATCH_SIZE = 8
|
|
ASR_SAMPLE_RATE = 16000
|
|
HUGE_GAP_THRESHOLD = 4000
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.autocast(device_type="cuda", dtype=torch.half)
|
|
def batch_encode(model, audios_list: list[bytes]):
|
|
audios: list[torch.Tensor] = [
|
|
(
|
|
torch.from_numpy(
|
|
librosa.load(io.BytesIO(audio), sr=model.spec_transform.sample_rate)[0]
|
|
)[None]
|
|
if isinstance(audio, bytes)
|
|
else audio
|
|
)
|
|
for audio in audios_list
|
|
]
|
|
|
|
lengths = torch.tensor([audio.shape[-1] for audio in audios], device=model.device)
|
|
max_length = lengths.max().item()
|
|
|
|
print(f"Encode max length: {max_length / model.spec_transform.sample_rate:.2f}s")
|
|
|
|
padded = torch.stack(
|
|
[
|
|
torch.nn.functional.pad(audio, (0, int(max_length - audio.shape[-1])))
|
|
for audio in audios
|
|
]
|
|
).to(model.device)
|
|
|
|
features, feature_lengths = model.encode(padded, audio_lengths=lengths)
|
|
features, feature_lengths = features.cpu(), feature_lengths.cpu()
|
|
|
|
return [feature[..., :length] for feature, length in zip(features, feature_lengths)]
|
|
|
|
|
|
@cached(
|
|
cache=LRUCache(maxsize=CACHE_MAXSIZE),
|
|
key=lambda model, audios: (model.device, tuple(audios)),
|
|
)
|
|
def cached_vqgan_batch_encode(model, audios: list[bytes]):
|
|
return batch_encode(model, audios)
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.autocast(device_type="cuda", dtype=torch.half)
|
|
def batch_vqgan_decode(model, features):
|
|
lengths = torch.tensor(
|
|
[feature.shape[-1] for feature in features], device=model.device
|
|
)
|
|
max_length = lengths.max().item()
|
|
padded = torch.stack(
|
|
[
|
|
torch.nn.functional.pad(feature, (0, max_length - feature.shape[-1]))
|
|
for feature in features
|
|
]
|
|
).to(model.device)
|
|
|
|
# If bs too large, we do micro batch decode
|
|
audios, audio_lengths = [], []
|
|
for i in range(0, padded.shape[0], MICRO_BATCH_SIZE):
|
|
audio, audio_length = model.decode(
|
|
padded[i : i + MICRO_BATCH_SIZE],
|
|
feature_lengths=lengths[i : i + MICRO_BATCH_SIZE],
|
|
)
|
|
audios.append(audio)
|
|
audio_lengths.append(audio_length)
|
|
audios = torch.cat(audios, dim=0)
|
|
audio_lengths = torch.cat(audio_lengths, dim=0)
|
|
audios, audio_lengths = audios.cpu(), audio_lengths.cpu()
|
|
|
|
return [audio[..., :length].numpy() for audio, length in zip(audios, audio_lengths)]
|
|
|
|
|
|
@torch.no_grad()
|
|
def batch_asr(model, lock, audios, sr, language="auto"):
|
|
resampled_audios = []
|
|
for audio in audios:
|
|
audio = torchaudio.functional.resample(audio, sr, ASR_SAMPLE_RATE)
|
|
assert audio.ndim == 1
|
|
resampled_audios.append(audio)
|
|
|
|
with lock:
|
|
res = model.generate(
|
|
input=resampled_audios,
|
|
batch_size=len(resampled_audios),
|
|
language=language,
|
|
use_itn=True,
|
|
)
|
|
|
|
results = []
|
|
for r, audio in zip(res, audios):
|
|
text = r["text"]
|
|
text = re.sub(r"<\|.*?\|>", "", text)
|
|
duration = len(audio) / sr * 1000
|
|
huge_gap = False
|
|
|
|
if "timestamp" in r and len(r["timestamp"]) > 2:
|
|
for timestamp_a, timestamp_b in zip(
|
|
r["timestamp"][:-1], r["timestamp"][1:]
|
|
):
|
|
# If there is a gap of more than 4 seconds, we consider it as a huge gap
|
|
if timestamp_b[0] - timestamp_a[1] > HUGE_GAP_THRESHOLD:
|
|
huge_gap = True
|
|
break
|
|
|
|
# Doesn't make sense to have a huge gap at the end
|
|
if duration - r["timestamp"][-1][1] > HUGE_GAP_THRESHOLD:
|
|
huge_gap = True
|
|
|
|
results.append(
|
|
{
|
|
"text": text,
|
|
"duration": duration,
|
|
"huge_gap": huge_gap,
|
|
}
|
|
)
|
|
|
|
return results
|