Some checks failed
Close inactive issues / close-issues (push) Has been cancelled
267 lines
7.8 KiB
Python
267 lines
7.8 KiB
Python
from dataclasses import dataclass, field
|
|
from typing import Literal
|
|
|
|
import torch
|
|
|
|
from .tokenizer import MODALITY_TOKENS, FishTokenizer
|
|
|
|
CODEBOOK_PAD_TOKEN_ID = 0
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class BasePart:
|
|
pass
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class VQPart(BasePart):
|
|
codes: torch.Tensor
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class TextPart(BasePart):
|
|
text: str
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class EncodedMessage:
|
|
tokens: torch.Tensor
|
|
labels: torch.Tensor
|
|
vq_mask_tokens: torch.Tensor | None = None
|
|
vq_mask_labels: torch.Tensor | None = None
|
|
vq_parts: list[torch.Tensor]
|
|
vq_require_losses: torch.Tensor | None = None
|
|
|
|
|
|
@dataclass(kw_only=True)
|
|
class Message:
|
|
role: Literal["system", "user", "assistant"]
|
|
parts: list[VQPart | TextPart] = field(default_factory=list)
|
|
add_im_start: bool = True
|
|
add_im_end: bool = True
|
|
cal_loss: bool = False
|
|
modality: Literal["text", "voice", "interleave"] | None = None
|
|
|
|
# By default, ignore the loss of the auto-generated im_start token
|
|
ignore_im_start_loss: bool = True
|
|
|
|
def encode(
|
|
self: "Message",
|
|
tokenizer: FishTokenizer,
|
|
) -> EncodedMessage:
|
|
all_tokens = []
|
|
all_labels = []
|
|
|
|
# Multi-modal tokens
|
|
vq_parts = []
|
|
vq_masks = []
|
|
|
|
parts = self.parts.copy()
|
|
if self.add_im_start:
|
|
modality_token = MODALITY_TOKENS[self.modality] if self.modality else ""
|
|
parts.insert(0, TextPart(text=f"<|im_start|>{self.role}\n{modality_token}"))
|
|
|
|
if self.add_im_end:
|
|
parts.append(TextPart(text="<|im_end|>"))
|
|
|
|
for part in parts:
|
|
if isinstance(part, TextPart):
|
|
tokens = torch.tensor(
|
|
tokenizer.encode(part.text),
|
|
dtype=torch.int,
|
|
)
|
|
elif isinstance(part, VQPart):
|
|
curr_codes = part.codes.clone()
|
|
tokens = torch.tensor(
|
|
[
|
|
tokenizer.semantic_id_to_token_id[i.item()]
|
|
for i in curr_codes[0].int()
|
|
],
|
|
dtype=torch.int,
|
|
)
|
|
vq_parts.append(curr_codes)
|
|
else:
|
|
raise ValueError(f"Unsupported part type: {type(part)}")
|
|
|
|
all_tokens.append(tokens)
|
|
if isinstance(part, VQPart):
|
|
vq_masks.append(torch.ones_like(tokens, dtype=torch.bool))
|
|
else:
|
|
vq_masks.append(torch.zeros_like(tokens, dtype=torch.bool))
|
|
|
|
if self.cal_loss:
|
|
all_labels.append(tokens.clone())
|
|
else:
|
|
all_labels.append(torch.full_like(tokens, -100))
|
|
|
|
tokens = torch.cat(all_tokens, dim=0)
|
|
labels = torch.cat(all_labels, dim=0)
|
|
vq_masks = torch.cat(vq_masks, dim=0)
|
|
|
|
assert tokens.shape == labels.shape == vq_masks.shape
|
|
|
|
if self.ignore_im_start_loss and self.add_im_start:
|
|
labels[: len(all_tokens[0])] = -100
|
|
|
|
return EncodedMessage(
|
|
tokens=tokens,
|
|
labels=labels,
|
|
vq_parts=vq_parts,
|
|
vq_mask_tokens=vq_masks,
|
|
vq_mask_labels=vq_masks,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class Conversation:
|
|
messages: list[Message]
|
|
|
|
def __init__(self: "Conversation", messages: list[Message] | None = None):
|
|
self.messages = messages or []
|
|
|
|
def encode(
|
|
self: "Conversation",
|
|
tokenizer: FishTokenizer,
|
|
add_shift: bool = True,
|
|
ignore_loss_tokens: list[str] = [],
|
|
) -> EncodedMessage:
|
|
# Build the input_ids and labels
|
|
tokens = []
|
|
labels = []
|
|
vq_parts = []
|
|
vq_mask_tokens = []
|
|
vq_mask_labels = []
|
|
vq_require_losses = []
|
|
ignore_loss_token_ids = [tokenizer.get_token_id(i) for i in ignore_loss_tokens]
|
|
|
|
for message in self.messages:
|
|
encoded = message.encode(
|
|
tokenizer,
|
|
)
|
|
tokens.append(encoded.tokens)
|
|
labels.append(encoded.labels)
|
|
vq_parts.extend(encoded.vq_parts)
|
|
vq_mask_tokens.append(encoded.vq_mask_tokens)
|
|
vq_mask_labels.append(encoded.vq_mask_labels)
|
|
vq_require_losses.extend([message.cal_loss] * len(encoded.vq_parts))
|
|
|
|
tokens = torch.cat(tokens, dim=0)
|
|
labels = torch.cat(labels, dim=0)
|
|
vq_mask_tokens = torch.cat(vq_mask_tokens, dim=0)
|
|
vq_mask_labels = torch.cat(vq_mask_labels, dim=0)
|
|
vq_require_losses = torch.tensor(vq_require_losses, dtype=torch.bool)
|
|
|
|
if add_shift:
|
|
tokens = tokens[:-1]
|
|
labels = labels[1:]
|
|
vq_mask_tokens = vq_mask_tokens[:-1]
|
|
vq_mask_labels = vq_mask_labels[1:]
|
|
|
|
for i in ignore_loss_token_ids:
|
|
assert i != -100 and i is not None
|
|
labels[labels == i] = -100
|
|
|
|
assert tokens.dtype in [
|
|
torch.int,
|
|
torch.long,
|
|
], f"Invalid dtype: {tokens.dtype}, conv: {conversation}"
|
|
|
|
return EncodedMessage(
|
|
tokens=tokens,
|
|
labels=labels,
|
|
vq_parts=vq_parts,
|
|
vq_mask_tokens=vq_mask_tokens,
|
|
vq_mask_labels=vq_mask_labels,
|
|
vq_require_losses=vq_require_losses,
|
|
)
|
|
|
|
def encode_for_inference(
|
|
self: "Conversation",
|
|
tokenizer: FishTokenizer,
|
|
num_codebooks: int,
|
|
) -> EncodedMessage:
|
|
# self.visualize(tokenizer)
|
|
|
|
encoded = self.encode(tokenizer, add_shift=False)
|
|
tokens = encoded.tokens
|
|
values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int)
|
|
values[0] = tokens
|
|
|
|
if encoded.vq_parts is None or len(encoded.vq_parts) == 0:
|
|
return values
|
|
|
|
vq_parts = encoded.vq_parts
|
|
vq_parts = [part.to(values.device) for part in vq_parts]
|
|
vq_parts = torch.cat(vq_parts, dim=1)
|
|
values[0, encoded.vq_mask_tokens] = vq_parts[0] + tokenizer.semantic_begin_id
|
|
values[1:, encoded.vq_mask_tokens] = vq_parts
|
|
|
|
return values
|
|
|
|
def visualize(
|
|
self: "Conversation",
|
|
tokenizer: FishTokenizer,
|
|
ignore_loss_tokens: list[str] = [],
|
|
):
|
|
encoded = self.encode(
|
|
tokenizer, add_shift=False, ignore_loss_tokens=ignore_loss_tokens
|
|
)
|
|
|
|
colors = {
|
|
"purple": "\033[95m",
|
|
"yellow": "\033[93m",
|
|
"red": "\033[91m",
|
|
"cyan": "\033[96m",
|
|
}
|
|
first_idx = 0
|
|
second_idx = 0
|
|
|
|
def print_first_group(x):
|
|
nonlocal first_idx
|
|
color = colors["purple"] if first_idx % 2 == 0 else colors["yellow"]
|
|
print(f"{color}{x}\033[0m", end="")
|
|
first_idx += 1
|
|
|
|
def print_second_group(x):
|
|
nonlocal second_idx
|
|
color = colors["red"] if second_idx % 2 == 0 else colors["cyan"]
|
|
print(f"{color}{x}\033[0m", end="")
|
|
second_idx += 1
|
|
|
|
for tok, lab in zip(encoded.tokens, encoded.labels):
|
|
val = tokenizer.decode([tok])
|
|
|
|
if lab == -100:
|
|
print_second_group(val)
|
|
else:
|
|
print_first_group(val)
|
|
|
|
print()
|
|
|
|
def append(self: "Conversation", message: Message):
|
|
self.messages.append(message)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
message0 = Message(
|
|
role="user",
|
|
parts=[
|
|
TextPart(text="Hello, how are you?"),
|
|
VQPart(codes=torch.zeros((4, 10))),
|
|
],
|
|
cal_loss=False,
|
|
)
|
|
|
|
message1 = Message(
|
|
role="assistant",
|
|
parts=[TextPart(text="I'm fine, thank you.")],
|
|
cal_loss=True,
|
|
)
|
|
conversation = Conversation([message0, message1])
|
|
tokenizer = FishTokenizer.from_pretrained("checkpoints/Qwen2-1.5B-Instruct")
|
|
conversation.visualize(tokenizer)
|
|
|
|
encoded = conversation.encode(tokenizer)
|
|
print(encoded)
|
|
print(tokenizer.batch_decode(encoded.tokens))
|